
MATHEMATICS OF COMPUTATION 
VOLUME 43, NUMBER 168 
OCTOBER 1984, PAGES 447-453 

Spectral Properties for the 
Magnetization Integral Operator 

By Mark J. Friedman* and Joseph E. Pasciak** 

Abstract. We analyze the spectrum of a certain singular integral operator on the space 
(L1(&2))3 where S2 is contained in three dimensional Euclidean space and has a Lipschitz 
continuous boundary. This operator arises in the integral formulation of the magnetostatic 
field problem. We decompose (L2(Q2))3 into invariant subspaces: in one where the operator is 
the zero map; in one, the identity map; and in one where the operator is positive definite and 
bounded. These results give rise to the formulation of new efficient numerical techniques for 
approximating nonlinear magnetostatic field problems [5], [6], [12]. 

1. Introduction. In this paper we analyze the spectrum of the singular integral 
operator 

(1.1) Aw = VTw, 

where 

(1.2) (TW)(x) = fw(y) .v () dy and r =Ix -yl 

defined on w E (L2(s2))3 for bounded domains i2 contained in R3. The operator A is 
used in integral formulations of the magnetostatic field problem and their discretiza- 
tion [1], [3], [11]. Applications of the results given in this paper lead to new efficient 
numerical procedures [5], [6], [12] for approximating nonlinear magnetostatic field 
problems. 

The spectrum of the operator (1.1) was first analyzed in [4] for smooth simply 
connected domains by the methods of classical potential theory. In this paper we 
extend these results to the case of domains with Lipschitz continuous boundaries. In 
contrast, our analysis is based on deriving an equivalent formulation of the operator 
as an elliptic boundary value problem. The desired results are obtained by develop- 
ing the appropriate properties of the boundary value problem. 

The outline of the remainder of the paper is as follows. In Section 2, we introduce 
some notation and state some preliminary results. In Section 3, we state and prove 
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the main results of the paper (Theorem 1 and Corollary 1) which describe the 
spectral decomposition of the operator A. 

2. Preliminaries and Notation. Let i2 denote a bounded domain in three dimen- 
sional Euclidean space R3 with Lipschitz continuous boundary F. Sobolev spaces on 
2 and F of order s will be denoted HS(2) and HS(1) with corresponding norms 
11 IIHS(- ) and I IHs(F), respectively, [7], [9]. For negative s, the Sobolev spaces are 
defined by duality. Let 9(i2) be the space of infinitely differentiable functions with 
support contained in i2 and 9'(i2) denote the space of Schwartz distributions on i2 
[14]. C?(U) denotes the space of infinitely differentiable functions on S2 and is dense 
in Hs(2) for any s. Ho(2) is defined to be the completion of .(i2) in the Hs(2) 
norm. 

The notation H will denote the product space H3 which has components in a 
space H. When H is a Hilbert space, H inherits the obvious norms and inner 
products. 

Let (, )Q denote the L2 inner product on i2 given by 

(2.1) (u, v)s f= uv dx. 

For vector-valued functions U = (U1, U2, U3) and V = (V1, V2, V3), (2.1) will be 
replaced by 

(u, V)Q = f u v dx. 

The Dirichlet inner product on i2 is given by 

DQ2(U,V)--(VU,VV)Q2 

The Lipschitz continuity assumption on F implies that the exterior normal 
n = (nl, n2, n3) on F exists almost everywhere [9]. In addition there are trace and 
extension operators as described by the following lemma, which may be found in [9]. 

LEMMA 1. The trace operator (denoted by TQ) extends continuously from .9(u) to an 
operator from H1(S2) onto H /2(r). 

LEMMA 2. There exists a bounded extension operator EQ from H1/2(J) into H1(2) 
satisfying 

T2oE, = I on H/2(F). 

Our results for the singular integral operator will be stated for a fixed bounded 
domain i2 with Lipschitz continuous boundary F. We shall denote the L2 inner 
product on F by K *, * ). In addition K* *) shall be used to denote the duality 
between Hs(F) and H-s(f). 

We shall need some auxiliary subspaces of L2 ( 2). Let 

Define 
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Note that the functions in A2 are constant on the components of i2 and i2 has only a 
finite number of components. Set 

H1 ( 2 H 2) { = O for all4E XA2}. 

H1(S2) is obviously a closed subspace of H'(2). A standard argument used in the 
proof of the Poincare-Friedrichs inequality [2] gives that for some c > 0 

(2.2) II|II|1(u) CDS2 (0, 0) for 4 E H' 

and hence { DQ(, )}1/2 is a norm on H2'(2) which is equivalent to the usual Sobolev 
norm. 

Note that K obviously coincides with 

{'ol EI H1 

and it is a straightforward consequence of (2.2) that K is closed in L2 (S2). 
Let 

KO- { v E Ho'(2)}. 

Then, arguments similar to those given above imply that KO is a closed subspace of 
L2(S2). The orthogonal complement of KO in K will be denoted KH and the 
orthogonal complement of K in L2 ( 2) will be denoted by N. The following lemma 
was given by Temam [13]. 

LEMMA 3. N is the completion in L2(2) of 

{ u E 9(u) Idiv u = 0). 

3. The Spectral Properties of A. Let w be a Lipschitz continuous vector field 
defined on i2. The kernel of the integral operator T is weakly singular and it is shown 
in [8] that the partial derivatives of Tw exist. Furthermore, the map w to aTw/ax, 
extends continuously to a bounded operator from LP (2) into L P (2) for p > 1. The 
map Tis thus a bounded map from L2(2) to H1(2). 

The goal of this paper is to prove the following theorem and its corollary. 

THEOREM 1. The operator A is a bounded selfadjoint map on L ( 2) and satisfies 
(i) Ker A = N. 

(ii) A is the identity when restricted to KO. 
(iii) KH is an invariant subspace of A. 
(iv) The spectrum of A on KH is contained in the interval [NO, A0] where 0 < No < 

AO < 1. 

COROLLARY 1. A 0 in Theorem 1 can be taken less than 1 if and only if the 
complement of i2 has no bounded components. 

We shall need additional notation and lemmas for the proof of Theorem 1. Let i2' 
be an arbitrary domain in R3. As in [10], we consider the spaces W1(S2') defined by 

Wol( 2')-{ 
1 

E'(2')|vf E L2(2') and 4/(1 + r) E L2(s2)} 

where r measures the distance to the origin. Then W01(2') has the natural norm 

(3.1) 11kwl(11) = ( || V2(2,) + Ikk/(1 + r?) 122 

The following lemma is given in [10]. 
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LEMMA 4. If D' has no bounded components then (3.1) is equivalent to the norm 

{DQ( u, u))1"/2 for u in Wo(2'). 

Let 2C denote the interior of the complement of the region U2. For any bounded 
domain O2' contained in Sc, any function in %1'(S0c), when restricted to 2', is in 
H1(2') and thus it is a straightforward consequence of Lemmas 1 and 2 that there 
exist appropriately bounded trace and extension operators TQ and EQ between 
Wo'(0c) and H1/2(J'). Let 

X2" - p (=- Wol (QJ )lv = 0on Oc} 

Note that functions in X2A' are constant on the bounded components of c2c and zero 
on the unbounded component of QC. We define 

Alr0 (0c) -{ EW(01(c) |( 2 )Q = ? for all EX2 }. 

Then Lemma 4 and (2.2) imply that { DQ(., .)}1/2 is a norm equivalent to (3.1) on 
WJ'(0c). Let Wo,O(Q c) be defined by 

Wol'O ( {c) 4EE Wo(0c))I Ta,.() = 0), 

and 

KH(C)= {v4cP E Wo(5c) and Da(A,c) =O for all E WoJo(Q)}. 

We shall use the following lemmas in the proof of Theorem 1. 

LEMMA 5. For 4 E H1/2(Jr) there exists a unique extension hO in H1(Q2) satisfying 

DQ(h,,4,,) - 0 for all 4 EHo(S). 

The above statement holds with S2, H1(Q2) and Ho(S2) replaced by Q, WJ1(S2) and 

WOl,O (QC). 

Remark. h (resp. h 2,-) is just the harmonic extension of 4 into i2 (resp. i2c). 
Let A/'- { Ta(4i)I E- X I} and define 

H- /2(F)IXF - { f E H-'/2(F) K 4, ) = 0 for all A E Xr }. 

LEMMA 6. For a function a in H 1/2(J)/X% there exists a unique function 4 in 
Hf(2) satisfying 

(3.2) D2(4,O) =K(,O5) for allO E H1(). 
Furthermore, the map a -v is a homeomorphism of H-1/2(F)/A r onto KH. A 
similar result holds with X], H'(F2), H'(s2) and KH replaced by Xr, W01(2c) 

W01(2,) and KH(S2C) respectively. 

Remark. a is the generalized outward normal derivative of 4 on F. 

LEMMA 7. Let w be in L2(S). Then u = Tw is the unique function in Wol(R3) 
satisfying 

(3.3) DR3(U, 4) = (w,vo)a for all 0 E WolJ(R3). 

We postpone the proof of the last three lemmas until after the proof of the 
theorem and its corollary. 
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Proof of Theorem 1. Lemma 7 and the definition of A imply that Aw = Vu where 
u is the solution of (3.3). Substituting 0 = Tv in (3.3) gives 

(3.4) (Aw, Av) R3 = (w, Av)Q 

and implies that A is symmetric and bounded, hence selfadjoint. 
If w is in KO, then w = Vv for some v E Ho(2) and v extended by zero is in 

Wol(R3). Hence, v extended by zero is the solution of (3.3) and thus Aw = vv = w 
which proves (ii). 

We next show that there exists Ao > 0 satisfying 

(3.5) A0jjWjj L2(g) < |IAwll L2(a) for all w E KH. 

Let w be in KH then w = vA for some 4 E H'(2). Let aw, be the distribution 
guaranteed by Lemma 6 satisfying 

(3.6) Dg(4, O) = (Kw, O) for all E H(e2). 

If u is the solution of (3.3), then Vu is in KH(12C). Let au be the corresponding 
distribution satisfying 

(3.7) Du' (U, O) = (qu, ) for all0 E W01(S2j) 

Let 0 be an arbitrary function in H1/2(F) and extend 0 to R3 by 

- E ( ) on S, 

XEssu on 2c. 

Then 4 is in W01(R3) and using (3.3), (3.6), and (3.7) 

~~~I (Wa)1=|(W, V+) Ql = IDu ( u, + (Yu, O) I 

C c{I1VUII L2(g) + IaUIH-1/2(Fr)} kIHl/2(F) 

< CIIAWII L2(R3) kkIHI/2(r). 

Thus by Lemma 6 and the definition of the norm in H-1/2(F) we have 

IWIL2(g) 2 CIA, H-1/2(r) < 1IA L2(R3) 

Thus (3.5) follows from (3.4) and the Schwarz inequality. 
By (3.3) and the definition of N, N is contained in Ker A and (i) follows from (ii) 

and (3.5). We also note that (3.4) with v = w and the Schwarz inequality imply that 

IjAWII L2(&) < IIWII L2(g) 

and thus the theorem will follow once (iii) is verified. 
From the definition Aw = VTw, the range of A is contained in K. Let w be in K.H 

u solve (3.3) and au be defined as above. If v = VA is in KO then Lemma 7 implies 
that 

0 = (w, v4)12 = Dg(u, A) + (au, (Vu, V4)g. 
Thus AW = Vu is in KH and the proof of the theorem is complete. 

Proof of Corollary 1. Assume that i2c has no bounded components. Let w be in KH 
and let u and au be as in the proof of Theorem 1. Then by (3.3), Lemmas 1 and 4 

(w, Aw) g = |IAWII L2() +IIVUII2L2(S,) > |IAWII2(u) ? CjU2H1/2(r). 
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Now since u = ha, Lemma 5 implies 

|IAwll L2(g) = jj VUII L2(g) < CIUIH1/2(_ 

thus 

(W, Aw)g > (1 + c)IIAWII2 2(g) 

with c > 0. This proves the first part of the corollary. 
Suppose 2 has a bounded component which we will denote 2'. Define f on F by 

I if x eab- 

Define w = Vha; then by Lemma 5, w is in KH. Furthermore, it is easily seen that 

fha on Q, 
U 

ha, on La 

is constant on the components of 2c and hence is the solution of (3.3). Thus Aw = w 
and the corollary follows. 

We shall only sketch the proofs of Lemmas 5 and 6 since the lemmas correspond 
to results which are well known in the case of smooth domains. 

Proof of Lemma 5. We prove Lemma 5 for the domain 2?. Given 0 in H1/2(r) 
define 4 = Ek(o) and let v be the unique function in Ho(g) satisfying 

Dg(v + A, O) = O for all O E Ho'(S). 

Then ha - v + 4 has the desired properties. The uniqueness of the extension ha is a 
consequence of the fact that 

Ho'(S2) = c- H'(2) ITuo = O}. 

Proof of Lemma 6. We prove Lemma 6 for 2?, the proof for 2c is similar. Let a be 
in H-1/2(Tr)/i ; then the map 0 -f (a, 0) is a bounded linear functional on 
Ho(S?). Since V+IIL2(Q) is a norm on 't(S?), the Riesz Representation Theorem 
guarantees that there exists 4 in H (S?) satisfying (3.2) for all 0 in H (S?). From the 
definition of H-1/2(f)/j/, this also implies that 4 satisfies (3.2) for all functions 0 
in H1(2). The map S(a) v is clearly bounded from H- /2()/A/ into KH. 

Given w = VF in KH we have by Lemma 5 

Dg (4+, h) I<, CIIVA|| L2(g) IAIH1/2(1r) for all 4 E H1/2 (F). 

Thus there exists a unique distribution a in H- 1/2(r) satisfying 

(K ,)= D.(,, h) forallo E 1/2 (r). 

One then argues that the map w -f a is a bounded map of KH into H-1/2(r)/A/ 
and S(a) = w. Hence S is a homeomorphism of H-1/2(r)/A/ onto KH. 

Proof of Lemma 7. Let w be in L2(2?). Choose { w, } in 9 (La) with wi converging 
to w in L2(S?). Clearly the functional 0 -> (w, vo)g is bounded on Wol(R3). Thus 
by Lemma 4 there exists a unique function u, E W01(R3) satisfying 

DR3(U,, ) = (w1, Vo)Q for all 0 E Wol(R3). 
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Clearly ui converges to the solution u of (3.3) in %1W(R3). It is also clear from 
classical potential theory that 

u= w dy = w V dy 

Thus, Tw, = ui and the lemma follows by density. 
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